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Abstract: A theoretical method to determine the optimum laser parameters for maximizing
the cutting efficiency for different materials (in particular human cornea) is proposed. The
model is simple and reduced to laser beam characteristics and cavitation properties. The model
further provides a method to convert energy fluctuations during the cutting process to equivalent
deviations in the cavitation bubbles. The proposed model can be used for calibration, verification
and validation purposes of laser systems used for cutting processes at relatively low cost and may
improve the quality of the results.
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1. Introduction

The available methods that allow for the correction of refractive defects have been expanded
with the advent of ultrashort pulses laser systems [1]. Intrastromal dissection is necessary for
femtosecond laser-assisted refractive surgery, in particular for the creation of a flap for the laser
assisted in-situ keratomiluesis, or for the creation of a intrastromal lenticule of corneal tissue for
lenticule extractions techniques [2]. It evolved from picosecond laser systems to ones operating
in the femtosecond regime [3], with recent attempts on sub-nanosecond regimes [4], but the
underlying mechanism remains the same [5]: tightly focusing an ultrashort laser pulse, nonlinear
absorption processes within the focal volume, generation of dense free electron plasma. If a
critical value is exceeded, laser induced optical breakdown occurs with very fast increase of
temperature and pressure, which leads to a rapid plasma expansion. This results in a shock wave
propagating into the surrounding medium, causing the formation of a cavitation bubble, which
may undergo a series of oscillations before ending in a small persistent gas bubble after some
microseconds. The temporally and spatially scanned process eventually leads to a confluent (or
coalescent) bubble (conforming a cleavage plane), enabling the separation of the tissue. The high
temperature and pressure of the gas in the bubble then leads to the bubble oscillation. However,
this picture is valid for water and may not be transferred completely to corneal tissue, in which
during bubble expansion, work must be done against the restoring forces of the lamellar structure
of the cornea. This has strong influences on the intrastromal bubble dynamics, eventually leading
to a smaller bubble size (and less oscillations) in cornea than in water for the same pulse energy.

As presented in several research works, the (asymptotic) size of the bubble grows with the
cubic root of the applied (suprathreshold) pulse energy [6–8]. For energies closer to the bubble-
threshold, bubble size rapidly increases for slightly increased energies. Achieving accurate
clinical outcomes and reducing the likelihood of a retreatment procedure are major goals of
refractive surgery. For that, accurately calibrated lasers with high stability are required.

The understanding of the underlying processes may help improving systems. It is well known
that a successful surgery depends on the appropriate design of the corrective profile, precise
delivery of laser energy to the corneal position, and reliable understanding of the corneal tissue
response. A large number of factors influence the outcome. Among them, laser energy delivery
technique [9], ablation decentration and registration [10], eye tracking [11], wound-healing [12],
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and biomechanics of the cornea [13], have been explored to predict or explain the clinically
observed discrepancy between intended and actual outcomes. The quantification of influence of
these factors is important for providing the optimal outcome for the refractive surgeries.

With the introduction of the femtosecond laser technologies for refractive surgery, corneal
cuts are more accurate and precise than ever before [14]. The three-dimensional geometry of the
cutting pattern must be converted into a series of pulse positions, often requiring several million
pulses for the surgery. The procedure is nowadays a successful technique, due to its micrometric
precision and the high predictability and repeatability of the process accompanied by minimal
side effects [15]. Although the procedure and techniques are quite mature and distributed, still
the topic "Optimization of the cutting efficiency" is worth to be analyzed and considered, because
its clinical implications are not yet deeply explored. The real impact of resolution in laser corneal
refractive surgery is still discussed in a controversial way. There may be essential differences
between the coalescence of one single, small bubble with another single, small bubble and the
coalescence of one single, small bubble with a residual bubble layer which has already been
accumulated by thousands of bubbles before. Every new single, small bubble contributes to
the cutting of the cornea, but they may be governed by different underlying mechanisms. For
instance, very different regimes have been observed for the interaction mechanisms of cavitation
bubbles induced by spatially and temporally separated fs-laser pulses (at least for pulse energies
well above the breakdown threshold) [16–19].

In a previous work [20] we presented an analytical model to optimize the laser settings of
ablation processes governed by linear absorption. For this work, we have taken similar expressions
(and a conceptually similar approach) adapted to processes governed by non-linear (multi-photon)
absorption. The main purpose of this paper is to present a simple theoretical framework (in the
form of a reduced model) to determine the optimum laser parameters for maximizing the cutting
efficiency. The latter is defined here as the completion of a corneal cut ensuring the generation of
coalescent bubbles, while imparting the minimum amount of energy to the tissue (i.e. minimum
dose).

2. Methods

The interaction of near infrared femtosecond laser radiation and corneal tissue is a complex
process [21]. The generation of cavitation bubbles for a given wavelength is mainly governed by
the relationship between the duration of the laser pulse and the numerical aperture of the optical
system (i.e. the available photon density per space and time in the focal volume) [22,23].

Corneal cutting is essentially a form of micro-machining. Although the single pulse energy is
low, given the small size of the focal diameter (beam waist) when focusing with moderately-high
numerical apertures (NA), energy density can be high. Additionally, given the short pulse
duration, the peak power provided can be high.

Many parameters have to be considered in designing an efficient laser cutting process. One of
which is the selection of the appropriate wavelength (typically in the 1000–1100 nm window for
corneal tissue) with very low linear absorption in the corneal tissue while tightly focused, which
results in a high-energy deposition in a small volume for a speedy and complete plasma mediated
ablation [24]. A second important parameter is a short pulse duration τ to maximize peak power
and minimize thermal conductivity to the adjacent tissue (femtosecond based τ<1 ps).

It has been reported that for surface ablation, the plateau-like region observed between 100 fs
and 1 ps for the corneal layers indicates that for use in laser surgery, laser pulse durations chosen
within this range should be practically equivalent [25]. Further to that, previous works show that
while pulse duration plays an important role in the determination of breakdown thresholds, the
threshold grows slower than the statistically expected square root of the pulse duration [26].

The affected area of a single spot is much smaller than the total treatment zone. Due to this,
multiple laser pulses are sequentially delivered on to the cornea. Each laser pulse locally creates
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a small cavitation bubble separating the corneal tissue. The global process is an integral effect of
the local process of each individual laser pulse. A larger bubble gives a faster treatment, but
a lower resolution. On the other hand, a smaller bubble increases the resolution at the cost of
increasing the treatment time due to increased number of laser pulses invested in cutting the
same area. Additionally, using laser pulses close to the threshold of the material (for generating
cavitation bubbles) would mean only imparting thermal effects instead of generating stable
bubbles. All these factors make the energy selection a sensitive criterion. While selecting the
optimum energy, a delicate balance needs to be accounted for, between the material thresholds,
resolution of the laser pulses, thermal and dose effects of the material and the total time required.
In the following steps, based on the size of the cavitation bubble, we calculate the local and
overall dose per treatment, further optimizing this dose for a minimum energy per area while also
accounting for fluctuations in the laser tissue interaction from fluctuations potentially appearing
in laser output energy.

2.1. Calculation of the bubble radius per laser pulse

The bubble radius RB can be calculated (in good agreement with the experience [27]) as shown
in [28]:

RB = K 3
√︁

EP − ETh, (1)

where EP is the energy of a single pulse, ETh is the threshold for the formation of cavitation
bubbles for the irradiated tissue or material below which no bubbles occur, and K is a coefficient
of the irradiated tissue or material.

For human corneal tissue irradiated with ultrashort near infrared pulses, the threshold for
bubble formation takes values in the order of nanojoules [26].

Despite of its simplicity, the method remains general. Different materials would have thresholds,
and specific laser beam characteristics would lead to a particular threshold. Parameters like
pulse duration, tissue properties are considered using previous works. In our simulations, we can
determine the threshold as being proportional to

ETh ∝
3√τλ(M2)2

NA2 (2)

with the corresponding pulse duration τ, the wavelength λ, the beam quality M2 and the numerical
aperture NA.

2.2. Calculation of the local dose per pulse

The following equation applies for the calculation of the local dose per pulse, i.e. per cavitation
bubble DP (AB represents the cross-sectional area of the cavitation bubble):

DP =
EP

AB

=
EP

πR2
B

=
EP

π
(︁
K 3√EP − ETh

)︁2 .

(3)
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2.3. Calculation of the overall dose per treatment

The following equation applies for the calculation of the overall dose per treatment DT :

DT =
ET

AT

=
nEP

πR2
T

,
(4)

where ET is the total energy deposited during a treatment, AT is the area of the treatment and RT
its radius. The number n represents the amount of pulses assumed that all pulses carry the same
energy, and pulses are approximately evenly distributed in the treatment area.

The total number of pulses (for a single pass over the treatment area) can be calculated as:

n =
πR2

T
∆x∆y

, (5)

where ∆x and ∆y are the distances between deposited neighboring spots along two essentially
perpendicular axes (e.g. x and y but also r and θ). Therewith, the overall dose simplifies to

DT =
EP

∆x∆y
. (6)

Since usually, the goal is to reduce the number of remaining tissue bridges, the interspot distance
∆ is usually (theoretically or empirically) related to the bubble radius:

∆ =
2RB

F
− G

=
2K 3√EP − ETh

F
− G,

(7)

where F is a scaling factor, i.e. dimensionless, and G is an additive value i.e. with length
dimensions (in particular µm). In general, the overlap factor will be F ≥ 1 and the reduction in
distance G ≥ 0 (i.e. the interspot distance is reduced compared to the bubble size).

So that the overall dose takes the form:

DT =
EP(︂

2K 3√EP−ETh
F1

− G1

)︂
·

(︂
2K 3√EP−ETh

F2
− G2

)︂ . (8)

2.4. Calculation of the linear dose per treatment

Another engineering simplification implies setting one of the interspot distances (∆1) very small
(setting very dense pulse trains in a given direction) and independent of the applied energy,
i.e. this interspot distance is smaller than the smallest bubble for the considered range of pulse
energies. Therefore, the linear dose DL can be defined as follows:

DL =
EP

∆1 ·
(︂

2K 3√EP−ETh
F2

− G2

)︂ . (9)

2.5. Optimization process

Optimization involves minimizing the energy per area, i.e. the dose D in order to minimize
the thermal effects on the tissue as well as the effects on the neighboring laser spots, while
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maintaining the delicate balance between thermal effects and the resolution of the treatment.
With regard to the optimum energy value Eopt, the minimization can be expressed as

∂D(Eopt)

∂EP
= 0. (10)

The value of EP calculated from this expression is the optimum pulse energy for the considered
metric. Following the optimization process, in the following expressions, the optimum pulse
energy for the considered metric, is represented by Eopt, and is calculated for the minima of the
considered metrics.

2.6. Determination of the fluctuations in laser-tissue interaction from the fluctuations
observed in the laser energy output

The deviations in laser-tissue interaction derived from the fluctuations observed in the laser
energy output (∆EP) with regard to a certain metric M can be equated as:

∆M = ∆EP
∂M
∂EP

. (11)

3. Results

Figure 1 represents the behavior of bubble radius according Eq. (1) for different thresholds ETh
for bubble formation.

Fig. 1. The progression of bubble radius with increasing pulse energy (A: left) and with
relative increase in pulse energy (pulse energy/ETh; B: right). At threshold energy, bubble
radius collapses to zero, they all approach the asymptotic value for suprathreshold pulse
energies with different rates.

3.1. Optimum local dose per pulse

Minimizing Eq. (3) following Eq. (10), the optimum energy can be calculated as

Eopt
P = 3ETh, (12)

which leads to optimum local dose per laser pulse Dopt
P when inserted again in Eq. (3):

Dopt
P =

3 3
√︂

ETh
4

πK2 . (13)
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3.2. Optimum overall dose per treatment

The optimum overall dose per treatment can be calculated through the following minimization:

∂DT

∂EP
= 0, (14)

while the differential

∂DT

∂EP
=

1(︂
2K 3√EP−ETh

F1
− G1

)︂
·

(︂
2K 3√EP−ETh

F2
− G2

)︂
−

2KEP

3F1 (EP − ETh)
2
3 ·

(︂
2K 3√EP−ETh

F1
− G1

)︂2
·

(︂
2K 3√EP−ETh

F2
− G2

)︂
−

2KEP

3F2 (EP − ETh)
2
3 ·

(︂
2K 3√EP−ETh

F1
− G1

)︂
·

(︂
2K 3√EP−ETh

F2
− G2

)︂2

(15)

as derived from Eq. (8) is not a very comfortable equation to find the root, yet a number of
simplifications may be applied.

Since the cross-sectional area of the bubbles is approximately circular, one can set:

F2 = F1 and G2 = G1, (16)

so that
∂DT

∂EP
=

1(︂
2K 3√EP−ETh

F1
− G1

)︂2 −
4KEP

3F1 (EP − ETh)
2
3 ·

(︂
2K 3√EP−ETh

F1
− G1

)︂3 (17)

Since the size of the bubbles increases for larger pulse energies, it is more common (and logical)
to set the interspot distance in relative relation (ratio) to the bubble size, so that G can be set to
zero.

Analogous to the optimum local dose, the optimum pulse energy and therewith the optimum
overall dose per laser pulse can be calculated as Eopt

P = 3ETh (see Eq. (12)) and

Dopt
T =

3F1F2
3
√︂

ETh
4

4K2 , (18)

respectively.

3.3. Optimum linear dose per treatment

The corresponding calculations for the optimum linear dose per laser pulse lead to

Eopt
P =

3ETh

2
(19)

and

Dopt
L =

3F2

(︂
ETh
2

)︂ 2
3

2∆1K
, (20)

respectively.
Figure 2 represents the corresponding dose for each metric (and the minimum dose corresponds

to the optimum energy).
Figure 3 aims to show the impact of F and G in the determination of the optimum.
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Fig. 2. The figure represents how different metrics for dose calculation behave with respect
to the pulse energy (A-C: top) and respect to relative pulse energy (pulse energy/ETh; D-F:
bottom) (A and D Left: local dose; B and E middle: overall dose using F1 = F2 = 20.25

and G1 = G2 = 0.2 µm; C and F right: linear dose using interspot distance ∆1 = 2 µm
and F2 = 20.25 and G2 = 0.2 µm). The optimum for each metric is clearly represented
with a minimum valley in the curve. Before the optimum energy, the dose decreases (with
maximum cutting efficiency at minimum dose). Beyond the optimum value the dose starts
to increase (representing a decline in cutting efficiency). The rate of increment in efficiency
below optimum is observed to be higher compared to the rate of decrement in efficiency
beyond optimum.

3.4. Determination of the fluctuations in laser-tissue interaction from the fluctuations
observed in the laser energy output

The deviations in dose ∆D derived from the fluctuations observed in the laser energy ∆EP output
can be equated as

∆D = ∆EP
∂D
∂EP

, (21)

but we have defined the optimum as the energy for which

∂D
∂EP

= 0. (22)

So that in the surroundings of the optimum pulse energy, fluctuations in the pulse energy have
little impact in the applied dose (local, overall, or linear). And as seen in Figs. 2 and 3, the
fluctuations are higher for pulse energies below optimum than for pulse energies above the
optimum. However, in reality, it may be a non-linear effect: Not only the dose is affected (directly)
by potential energy fluctuations but also the spacing (indirectly). In a real laser system, internal
structures may control the spacing in a way, that changes in energies lead to corrected spacings.

The deviations in bubble radius ∆RB derived from the fluctuations observed in the laser energy
output can be equated as

∆RB = ∆EP
∂RB

∂EP

=
K∆EP

3(EP − ETh)
2
3

,
(23)
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Fig. 3. The figure represents how different settings for F and G behave with respect to the
optimum pulse energy for the case ETh of 200 nJ (A-B: Top row in energy, C-D: bottom
row in relative energy; A and C left column for overall dose, B and D right column for
linear dose). The optimum for each metric is clearly represented with a minimum valley
in the curve. The value of F does not affect the position of the optimum energy but only
the associated dose, while G affects both position of the optimum energy (shifted to higher
optimum energies) and associated dose with a minor impact.

or, in relative terms
∆RB

RB
=

∂RB
∂EP

RB
EP
∆EP

EP

=
EP

3(EP − ETh)

∆EP

EP
.

(24)

When EP
3(EP−ETh)

>1, energy fluctuations are amplified in larger relative fluctuations in bubble
radius. When EP

3(EP−ETh)
<1, energy fluctuations are attenuated in smaller relative fluctuations

in bubble radius. Solving EP
3(EP−ETh)

= 1 provides another optimum pulse energy beyond which
energy fluctuations are attenuated in smaller relative fluctuations in bubble radius leading to
Eopt

P =
3ETh

2 (see Eq. (19)). From the fluctuations observed in energy delivery, the deviations in
bubble radius can be estimated, which is shown in Fig. 4 for the case ETh = 150 nJ.

The same dependency as for the bubble radius RB can similarly be calculated for the cross-
sectional bubble area AB, where

AB = πK2(E − ETh)
2
3 (25)

and
∆AB = ∆EP

∂AB

∂E

=
2πK2∆EP

3 3√EP − ETh
,

(26)
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Fig. 4. The figure represents how different levels of energy fluctuations affect the size of
the cavitation bubble with respect to the applied pulse energy for the case ETh of 150 nJ
(A-B: Top row in energy, C-D: bottom row in relative energy; A and C left column for
bubble radius, B and D right column for bubble area). The optimum for each metric can be
found when the slope of the curve equals 1. The level of energy fluctuations does not affect
the position of the optimum energy but only the associated fluctuations of the size of the
cavitation bubble.

or, in relative terms
∆AB

AB
=

∂AB
∂EP

AB
EP
∆EP

EP

=
2EP

3(EP − ETh)

∆EP

EP
.

(27)

When 2EP
3(EP−ETh)

>1, energy fluctuations are amplified in larger relative fluctuations in bubble
area. When 2EP

3(EP−ETh)
<1, energy fluctuations are attenuated in smaller relative fluctuations in

bubble area. Solving 2EP
3(EP−ETh)

= 1 provides another optimum pulse energy beyond which energy
fluctuations are attenuated in smaller relative fluctuations in bubble size leading to Eopt

P = 3ETh
(see Eq. (12)).

For a given energy fluctuation, as the energy increases, the relative bubble size deviation
decreases. This was also predicted by the smaller slope for high-above threshold energies in Fig. 1.
The relative deviation is the corresponding relative change in the metric value in percentage.
For energies beyond optimum energy, deviations of the bubble size are smaller than energy
fluctuations. The effects of the energy fluctuation are magnified at energies lower than the
optimum energy.

4. Discussion

This study provides analytical expressions for calculation of some optimum energy parameters
for maximizing cutting efficiency and for determination of the fluctuations in corneal cuts from
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the fluctuations observed in energy delivery. Separate analysis of the effect of each parameter
was performed. Several metrics relevant to laser refractive surgery have been proposed and
optimized (local dose DP, overall dose DT , linear dose DL). In a sense, these are the metrics
characterizing the safety of the irradiation.

The optimization of intrastromal dissection first requires an understanding of the underlying
mechanisms, thus the simplistic modeling approach presented in this work may not cover all the
details required to provide a rigorous analytical solution. Yet, since the cornea is composed of
≈ 85% water, we believe that the model may still hold as a valid approximation. Human cornea is
a viscoelastic material and the dynamics of cavitation bubbles is quite different from the case of
water. However, even in the case of viscoelastic materials Eq. (1) holds [29,30]. Both references
seem to support our simplistic model. In a viscoelastic material and for large values of the laser
pulse energies, the shock wave emitted during optical breakdown has a bipolar component (a
compressive wave followed by a tensile wave); but this is likely beyond the range 3× Threshold
determined with our simplistic approach. In that regime of high pulse energies (probably clearly
in the photodisruption regime), the tensile wave may produce negative collateral effects which
are not included in the present model and, thus, the proposed model may have limitations for
energies exceeding 10× the threshold.

The differences between bubble dynamics in water and cornea may be actually more significant
than assumed in this work. Even though the intrastromal collagen tissue has ≈ 85% water content,
the lamellar structure of the tissue leads to much more complex bubble dynamics than stated here,
with correspondingly large implications for the cutting process. However, this manuscript does
not aim to investigate or model intrastromal corneal dissection, but rather to present a simple
model for dose optimizations. This complexity may limit the extent this approach can really
contribute to the optimization of cutting parameters for ultrashort pulse laser systems.

At the core of our calculation is the cubic root relationship between energy (exceeding the
threshold) and bubble size suggested by Vogel and associates [31]. We present a very simple
model based on the above mentioned and well-known formula of bubble radius RB depending
on laser pulse energy EP. We consider the simplicity of the model as one of the beauties of
this work. All the optimization problem can be reduced to the value of the energy threshold to
generate cavitation bubbles.

The size of the cavitation bubble increases with pulse energy. In our simulations, we considered
K as constant coefficient depending only on the tissue. This is in agreement with the findings
by Vogel et al. [32]. This can be interpreted in the sense, that the initial amount of energy
(subthreshold) is invested to satisfy the condition to generate the plasma; and only (a fraction of)
the energy above threshold (the amount of energy exceeding the threshold) can be invested in
generating the shock wave which ultimately leads to the cavitation bubble. So that the threshold
is the only characterizing part of the bubble dimensions, i.e. all curves of bubble size vs energy
asymptotically trend to the same curve (the one for a hypothetical zero-threshold). Hence, for very
high energies, the bubble size is irrespective of laser parameters such as wavelength, numerical
aperture, or pulse duration (or even M2).

Even in the case that K may not be an absolute constant, and may depend upon wavelength,
numerical aperture, repetition rate, or pulse duration (or even M2), our model remains valid
as long as K is not a function of pulse energy. It may be argued that Eq. (1) is valid only for
energies far above the threshold value for bubble formation, and that closer to the threshold
value the coefficient K (i.e. in a sense the conversion efficiency) may be a function of the laser
pulse energy. Previous works [29] actually, seem to support our simplistic model. For energies
far above the threshold for bubble formation (the threshold becomes negligible compared to
pulse energy), Eq. (1) takes the form of E

1
3 . The deviations observed close to the threshold can

be mainly explained by the fact that in this regime, the amount of energy exceeding threshold
dramatically diminishes, thus (E − ETh)

1
3 ≪ E

1
3 . This can be explained without the need for a
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dynamic behavior of K or the conversion efficiency close to the threshold. It suffices that K (i.e.
in a sense the conversion efficiency) affects (E−ETh)

1
3 instead of E

1
3 . Actually, taking 12% as the

asymptotic non-linear conversion efficiency ηnl (as estimated from [29] for a viscoelastic material
with 85% water), the overall ratio from bubble energy to deposited pulse energy equates:

ηnl = αnl ·
E − ETh

E
, (28)

where αnl is the non-linear absorption coefficient. This leads to the following values:

• For E = ETh, ηnl = 0,

• For E = 3ETh
2 , ηnl =

αnl
3 = 4%,

• For E = 2ETh, ηnl =
αnl
2 = 6%,

• For E = 3ETh, ηnl =
2αnl

3 = 8%,

• For E = 10ETh, ηnl = 0.9 · αnl = 11%,

perfectly matching the fact that the conversion efficiency of incident laser energy into bubble
energy strongly depends on the nonlinear absorption process. At threshold it is virtually 0 and
increases to an approximately constant value of 10%–15% at energies larger than ten times the
threshold energy. Therefore, the proposed simple model is capable of reasonably reproducing the
conversion efficiency for the intermediate energy range, which is absolutely relevant for refractive
surgery.

The understanding of the underlying processes may help improving systems. Our model aims
to a simple approach for describing the global effects, without the need to enter the details of the
physical processes. We suggest a simple way to optimize the settings to drive the basic physical
process for such structure formation within specific range of parameters (mainly fs, near-IR
pulses).

In essence, laser focus, cavitation bubbles and the disruption process are three dimensional
processes. All the used calculations, however, were done in two dimensions since the aim
of generation of cleavage planes was approached as a dose optimization process, i.e. energy
deposited per unit of area.

In this work, it is assumed that the equatorial plane of the bubble has a circular shape, whereas
the axial plane will generally represent a vertically elongated ellipse; thus the bubble can be
represented as a vertically elongated ellipsoid of revolution/spheroid.

The presented results are valid as long as effects of the repetition rate of the laser remain
negligible. The repetition rate could play a crucial role. If the lifetime of the cavitation bubble (or
the remaining gas bubble) is longer than the inverse of the pulse repetition rate (i.e. the interpulse
time), the subsequent pulse may target the cavitation and will be distracted so that no breakdown
can occur. Such effects can be inferred from previous works on the interaction mechanisms of
cavitation bubbles induced by spatially and temporally separated fs-laser pulses (at least for pulse
energies well above the breakdown threshold) [16–19]. This effect (as far as we can judge, not
deeply characterized yet) may/would open a new degree of freedom in the optimization process.

The interplay between bubble size, spot spacing and repetition rate is very complex. In the
work by Juhasz et al. [5] photographs of the bubble dynamics in bovine cornea showed a bubble
lifetime of up to 1 ms. The maximum bubble size of 45 µm diameter is too large for today’s
application in the refractive surgery field. More recent work by Tinne et. al. [19] showed
that bubbles in water and 1% gelatin have lifetimes above 10 µs (for energies above 1 µJ and
relative energies above 6× the threshold). In the same work Tinne et al. [19] found in water that
below 3.6× the threshold (≈ 500 nJ in their setup) no influence between the cavitation bubble
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oscillations was observed, and below 7.2× the threshold (≈ 1000 nJ in their setup) an asymmetric
bubble collapse can be observed. For the 2% and 5% gelatin an asymmetric bubble collapse was
observable during the interaction oscillation for energies as high as 8.4× the threshold (≈ 1200
nJ in their setup) due to the decrease in maximum bubble radius and lifetime with increasing
gelatin concentration [19], whereas the temporal overlap parameter was neglected for there was
no influence on the interaction effects.

In fact, the repetition rate is crucial for intrastromal dissection in refractive surgery. The bubble
remains within the cornea for a few microseconds (for low pulse energies slightly exceeding the
breakdown threshold, only one expansion and collapse of the bubble occurs). So that below
some 10 kHz Repetition rate would probably not play a relevant role, and beyond some 100
kHz Repetition rate would probably play a crucial role and interactions with the bubble of the
previous laser pulse have to be considered, which is additionally dependent on spot spacing and
bubble size/laser energy. Systems on the market tend to operate at repetition rates above 100
kHz, and would be "exactly at the border" in the several 100 kHz range. We acknowledge this as
a limitation of the current model.

In addition, closely neighboring pulses can strongly influence each other: A subsequent pulse
may have to interact with material optically changed by the previous pulse, thus causing varying
conditions for the laser-tissue interaction [16,19,33].

Also, as reported in previous works [7], we only consider here the threshold for bubble
formation. This threshold usually is lower than the threshold for dielectric breakdown [34], and
lies below the actual photodisruption regime (high density plasma), maybe in the region of low
density plasma [35] (i.e. plasma mediated ablation [36]).

We acknowledge that for the typical surgeon/user of a system determining the threshold
empirically may be difficult (or actually impossible given the limitations imposed by the
manufacturers of commercial systems), yet for researchers and manufacturers this information
may well be available. Further to that, by applying comprehensive physical modeling [26],
simple expressions may be derived to determine (or at least reasonably estimate) the breakdown
threshold for specific laser configurations.

Pulse energy plays the most important role in the determination of bubble size. The range
for energies of the femtosecond systems for refractive surgery available in the market runs from
about 50 nJ to about 1 µJ, whereas the threshold for generating bubbles runs from about 30 nJ to
about 300 nJ.

Equation (4) shall be understood as the energy reaching the focus (i.e. after reducing the
component of the linear absorption) and not the energy delivered by the laser (or the energy
reaching the corneal surface), but linear absorption in this regime is so weak, that this reduction
may represent only about 1% of the pulse energy. This 99% transmission (in general constant for
a constant depth) would not (or only minorly) change the obtained results (but may marginally
affect 3-dimensional cuts across different depths in the cornea).

The calculation of the local dose per pulse by calculating the laser pulse energy per bubble
cross-sectional area does not correspond to the actual dose imparted by the individual laser
pulses in focus. From a purely physical point of view, the energy of the laser pulse must be
normalized to the focal area. We defined the local dose per laser pulse as the energy per area of
the cavitation bubble, and not per area of the spot size. Spot size will not increase with energy,
so dose per pulse over spot area would actually be linear with energy, so that trivially zero energy
or EP = ETh would lead to minimum spot dose. The pulse energy required for the optimum local
dose per laser pulse was found to be 3× the threshold. The approach of taking the laser pulse
energy per bubble cross-sectional area as the "effective" dose of the individual pulses is practical
from a modeling point of view (especially because as the pulse energy increases, the increase in
"effective" dose is attenuated by the increasing bubble size), but physically close to the focus, the
increase in pulse energy is associated with an actual higher local dose per pulse.
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For the overall dose per treatment we used two approaches, one in which two perpendicular spot
distances both depending on pulse energy are used, and another one in which one spot distance is
fixed at a very small value, and only the spot distance in the perpendicular direction depends on
pulse energy. The former may represent well the conditions for pulse-to-pulse scanning systems
using reticular-grids as scan patterns (e.g. Johnson & Johnson Vision iFS, or Alcon FS200),
whereas the latter may represent the conditions for pulse-train scanning systems using fast and
slow tracks as scan patterns (e.g. Ziemer Z8).

In order to generate coalescent bubbles (cleavage plane), the interspot distances have to be
set smaller than the bubble diameter, and in the pulse-train scanning systems the fixed interspot
distance should be smaller than the smallest bubble for the considered range of pulse energies
(and for circular bubble areas the factor

√
2 would ensure tissue-bridge free dissection). This

implies that the linear dose (actually a misnomer, but to reflect the fact that only the interspot
distance along one direction is varied) is always higher than the overall treatment dose, and both
higher than the local dose per laser pulse.

In general, the interspot distance is set as a function of the pulse energy (ideally through
Eq. (7)). For ∆ = 2 ·RB, adjacent bubbles would be "just touching" in the two principal directions;
but free, uncut areas (tissue bridges) will remain on the diagonals. For ∆ = 2·RB√

2
, adjacent bubbles

would strongly overlap in the two principal directions; but just touching along the diagonals.
Thus, for ∆ = 2·RB

20.25 , adjacent bubbles would slightly overlap in the two principal directions and
close to overlap in the two diagonal directions (leaving minimum tissue bridges). For that reason,
we consider the values F = 20.25 and G = 0.1 µm (since the bubble are a few µm in size) as a
reasonable compromise. This is depicted in Fig. 5 for a cartesian arrangement.

Fig. 5. The figure represents how different settings for F behave with respect to the ideal
overlap of adjacent cavitation bubbles. The interspot distance is set as a function of the
pulse energy through Eq. (7). A: For ∆ = 2 · RB, adjacent bubbles are tangential in the two
principal directions; but free, uncut areas (tissue bridges in the form of a diamond-like area
between the 4 bubbles) will remain on the diagonals. B: For ∆ = 2·RB√

2
, adjacent bubbles

strongly overlap in the two principal directions; and are tangential along the diagonals. In
this ideal case, no uncut areas are left and a tissue-bridge-free dissection can be expected.
C: For ∆ = 2·RB

20.25 , adjacent bubbles slightly overlap in the two principal directions and are
close to overlap in the two diagonal directions (leaving minimum tissue bridges between
the 4 bubbles). The size of the diamond-like area is 1

4 of the size in A. For that reason, we
consider the values F = 20.25 and G = 0.1 µm (since the bubble are a few µm in size, not
depicted) as a reasonable compromise.

The pulse energy required for the optimum overall dose per treatment was found to be also
3× the threshold, whereas the pulse energy required for the optimum linear dose per treatment
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resulted in 1.5× the threshold. These optimum values do not change for different overlap factors
(F), but shift to higher optimum energies for absolute reductions in distance (G).

Linking this model with experimental data or cutting efficiency data from the systems in
the market would strengthen its value. However, those systems offer the freedom to select
spacing and pulse energy with a relatively high degree of independence. First determining the
theoretical optimum, and then "strongly" modifying the settings in all directions (increasing
energy shall not (largely) improve separation, while reducing energy shall be clearly detrimental;
decreasing spacing shall not (largely) improve separation, while increasing spacing shall be
clearly detrimental) may help at this aim. Considering experiments on some ex-vivo model
to further stress the efficiency curve, while qualifying the cutting quality and the easiness of
dissection remains a subjective matter and may mislead the clean model. It may actually be
interpreted that the determination of threshold shall be improved.

Perhaps the strongest criticism of this work is the lack of comparison with experimental results.
Despite the absence of verification or confirmation by experimental methods, recent reports
[37–39] work in energy regimes of less than 2× the threshold associated with tight/dense spacings
and repetition rates in the some MHz range, well below the 10 µs interpulse time.

For pulse energies above 1.5× the threshold, energy fluctuations are attenuated in smaller
relative fluctuations in bubble radius, whereas for energies above 3× the threshold, energy
fluctuations are attenuated in smaller relative fluctuations in bubble area. This optimum is
irrespective of the actual energy fluctuations.

The effect of energy deviation in bubble size accounts for 100% (bubble or no bubble) close to
the threshold. This implies that working at energies above and beyond the optimum value can
reduce the effects of energy fluctuations on the outcomes by reducing the deviations in bubble
size. Observing the fluctuations in the energy delivery, the deviations in the size of the cavitation
bubble can be estimated. For a given energy fluctuation, as the energy increases, the relative
deviation in the size of the cavitation bubble decreases. Beyond the optimum energy, the effect
of energy fluctuations on the size of the bubble is lesser compared to energies below optimum.
This has also been recently reported for other types of femtosecond micromachining [40].

There is another way of interpreting optimum efficiency in terms of rate of change as shown in
Fig. 4. The rate of change of the selected metric with respect to the energy can be evaluated. At
the optimum fluence for a given metric, the rate of change vs. energy equals unity (so relative
energy fluctuations correspond 1:1 to relative deviations in bubble size). This can be explained
with the effect of energy fluctuations on different metrics with respect to the energy (Fig. 4).
Below optimum, relative energy fluctuations are "amplified" in larger deviations in the bubble
size, i.e. investing a bit more energy, drastically increases bubble size. Beyond optimum, relative
energy fluctuations are "attenuated" in smaller relative deviations in the size of the bubble, i.e.
to slightly increase bubble size, much more energy shall be invested. Additionally, the rate of
increment in efficiency below optimum is observed to be higher compared to the rate of decrement
in efficiency beyond optimum (Fig. 2). In Fig. 4, for explanatory purposes, the energy fluctuation
was set at 1% to 9% level, corresponding to a realistic value, which helps to understand the key
concept of amplifying versus attenuating the energy fluctuation.

For the selected valuable metric to be optimized (slightly different versions of dose) the
final determined value shall be equal or higher than the theoretical optimum in order to have a
safety margin for achieving the highest cutting efficiency for this energy, but attenuated relative
deviations.

The calculation of the final optimum energy depends mainly on two factors. First, the total
number and kind of metrics being considered for optimization of the cutting efficiency and
second the energy fluctuations of the system. Therefore, the final energy can be calculated in two
steps in order to account for the aforementioned factors. In the first step the optimum energy
for the considered metrics is calculated. In case one considers multiple metrics an optimum
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energy between lowest and highest values amongst the considered metrics should be chosen.
In the second step the calculated optimum fluence can be added with a factor that accounts for
the fluctuations in energy. Adding this factor shall provide additional stability from the energy
fluctuations of the system. For femtosecond laser systems, energy deviation typically lies below
±3% Root-Mean-Square (RMS). Considering the RMS as one standard deviation, we arrive at
around ±5% energy deviation for a typical femtosecond laser system. Hence, we propose to add
+5% to the analytically calculated optimum energy. This factor will ensure that the energy level
will remain optimum even if energy instability is introduced because of the system itself.

We consider dose (in different variants) as most valuable metric for two reasons, one to reduce
the total amount of energy delivered and second since it is the base for the determination of the
maximum permissible exposure as described in the standards for laser safety [41]. The cutting
resolution is also made more stable for the optimum criteria as the bubble size saturates quickly
after optimum. Furthermore, the energy optimized for minimum dose shall reduce the thermal
effects induced in the tissue, as well as the incidence of clinical complications as e.g. opaque
bubble layers [42].

Being in the energy regime above optimum (i.e. for which the relative energy fluctuations
are "attenuated" in smaller relative deviations in the size of the bubble) also sets the energy
sufficiently above threshold as to reduce the incidence of clinical complications as e.g. black
spots [43].

As a conclusive example, we would choose an optimum energy of

Eopt
P = 2ETh, (29)

which lies between 3/2× and 3× the threshold (theoretical optima for dose and for attenuating
energy fluctuations) +5% (from typical energy fluctuations of femtosecond laser systems).

This model can be easily generalized to any material for which the bubble coefficient and the
threshold for bubble formation for the specific wavelength and laser characteristics are known.
With that, it may complement previous analytical approaches to the efficiency problem and may
sustain the observations reported by others.

Clinical evaluations on human eyes are needed to confirm the preliminary simulated results
presented herein. Accurate knowledge for the coefficient of the human cornea is imperative in
validating the presented results.

5. Conclusions

The model introduced in this study provides an analytical expression for optimizing cutting
parameters for ultrashort pulse laser systems. Furthermore, due to its analytical approach, it is
valid for different laser devices used in refractive surgery, as well as for any materials for which
the coefficients and the bubble characteristics for the specific laser system are known.

The development of more accurate models to improve emmetropization and the correction
of ocular aberrations is an important issue. We hope that this model will be an interesting and
useful contribution to refractive surgery and will take us one-step closer to this goal.
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